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Preface 

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives 
to conduct the most promising public interest energy research by partnering with RD&D 
entities, including individuals, businesses, utilities, and public or private research institutions. 

PIER funding efforts focus on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Energy-Related Environmental Research 
• Energy Systems Integration  
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 
• Transportation 

In 2003, the California Energy Commission’s PIER Program established the California Climate 
Change Center to document climate change research relevant to the states. This center is a 
virtual organization with core research activities at Scripps Institution of Oceanography and the 
University of California, Berkeley, complemented by efforts at other research institutions. 
Priority research areas defined in PIER’s five-year Climate Change Research Plan are: 
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas 
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the 
economic consequences of both climate change impacts and the efforts designed to reduce 
emissions. 

The California Climate Change Center Report Series details ongoing center-sponsored 
research. As interim project results, the information contained in these reports may change; 
authors should be contacted for the most recent project results. By providing ready access to 
this timely research, the center seeks to inform the public and expand dissemination of climate 
change information, thereby leveraging collaborative efforts and increasing the benefits of this 
research to California’s citizens, environment, and economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
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Abstract 

 

Climate change will have profound effects on the distribution, function, and productivity of 
California’s forests. To provide managers with the means to anticipate likely forest responses to 
climate change, we initiated the development of a climate-sensitive growth and yield model for 
the mixed conifer forests of the Sierra Nevada (WS CalClim 1.0). WS CalClim 1.0 was built 
using the logic and architecture of the WESSIN variant (WS) of the Forest Vegetation Simulator. 
Our initial focus was on designing and testing a model of ponderosa pine productivity.  

In WS CalClim 1.0, ponderosa pine diameter and height growth were positively correlated with 
annual precipitation and annual air temperature (as measured using degree-day indices). 
Simulated growth of a commercial pine plantation during a 50-year management cycle (20 to 
70 years old) for 18 climate realizations predicted increases in yield as measured in total tree 
volume. The increased growth was most directly tied to the consistent projections of warmer 
temperatures during the twenty-first century. Under the different climate scenarios, pine yield 
increased from 9 percent to 28 percent above baseline by 2100. This result contradicts our 
previous work, which reported decreases in pine yield by 2100 under similar climate 
projections. We can not fully explain the discrepancy in the predictions yet we noted that WS 
CalClim 1.0 skillfully projected ponderosa pine diameter and height growth for a validation 
data set with little to no bias. Also WS CalClim 1.0 was built using a robust modeling 
framework and based on richer and more spatially refined tree and climate data sets.  

Climate-sensitive growth models are only one element needed for a full accounting of the 
potential climatic and economic benefits from forestry projects in California. Tracking the net 
climate benefits of forests will require both an array of field plot data that cover all of 
California’s forests and data sets that can be coordinated with economic information that 
captures the import and export of forest products and their substitutes. Developing forest 
management strategies to increase the risk-adjusted level of climate benefits across for 
California’s forests will require integrating these data products into spatially-explicit tools that 
can analyze the tradeoffs and synergies among competing social goals for forests.  

 

 

 

Keywords: Ponderosa pine, Forest Vegetation Simulator, tree mortality, climate-sensitive 
growth model, WS CalClim 1.0, PRISM, forest management 
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1.0 Introduction  
With growing concern over potential climate change, the most useful models will be 
sensitive to key effects of climate change on tree and stand development over long time 
periods. This will be fundamental to addressing questions of sustainability of forest 
management. 

       Monserud 2003 

Predictions indicate that climate change will have profound effects on the distribution, function, 
and productivity of California’s forests (Lenihan et al. 2003; Hayhoe et al. 2004; Battles et al. 
2008). These changes pose daunting challenges to the widely shared goal of sustainable forest 
management. The goal is a compelling one—forests should be managed to meet current needs 
without compromising the ability of future generations to meet their needs. However any plan 
designed to strike a balance between current and future demands depends on the ability to 
make reliable projections of forest dynamics. Thus there is a pressing need to provide managers 
with the means to predict forest responses under a range of expected climate scenarios. Equally 
important, anticipated changes in productivity over the next century must be considered in 
policies being designed to promote the use of forestry projects for climate mitigation.  

Our earlier research (Battles et al. 2008) suggested that the direction of climate change in 
California would reduce the productivity of timberlands in the Sierra Nevada. In particular, the 
growth of ponderosa pine (Pinus ponderosa)—a major timber species—declined with drier and 
warmer weather. We obtained these results by adapting an industry standard planning tool to 
forecast 30-year tree growth and timber yields for forest stands under a changing climate. 
Specifically we used CACTOS Version 5.8 (the California Conifer Timber Output Simulator, 
Wensel et al. 1986) as the base model for projecting future growth. Initially CACTOS was built 
without reference to climate. Subsequently, differences between observed and predicted growth 
(Wensel and Turnblom 1998) spurred a basic research effort to quantify the influence of climate 
on forest growth in the Sierra Nevada (Wensel and Turnblom 1998; Yeh 1997; Yeh et al. 2000; 
Yeh and Wensel 2000). We used results from this peer-reviewed research to incorporate climate-
sensitivity into CACTOS projections (CACTOSclim). However, we recognized the inherent risk of 
applying a model, even an adapted one, to situations for which it was not designed (Monserud 
2003). 

Our current objective is to build from scratch a climate-sensitive forest growth model using the 
best available data. It must be as inclusive as possible with respect to modeling flexibility and 
information extent so as to provide results that will accurately depict future climate variability 
and long-term trends. Our ultimate goal is to produce a tool that will inform forest planning, 
economic analyses of climate change and the development of adaptation strategies for Sierra 
Nevada forests.  

1.1. Background and Approach 
To ensure the generality and accessibility of our work, we built our climate-sensitive model for 
forests in the Sierra Nevada of California (WS CalClim 1.0) using the logic and architecture of 
the Forest Vegetation Simulator (FVS, Ritchie 1999). FVS is an individual-tree, nonspatial, stand 
growth model built around a set of empirically derived equations of diameter growth, height 
growth, crown ratio, regeneration, and mortality. Growth models are species-specific and are 
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grouped into model variants developed for different forest communities. We modified the 
growth functions for the variant designed for the forests on the west side of the Sierra Nevada 
(WESSIN, Dixon 1994). FVS is one of the most widely used forest management growth models 
with 20 variants representing most forested regions of the United States. It is maintained by the 
U.S. Forest Service and available for free download to all users (USFS 2008). While we 
constructed WS CalClim 1.0 to fit within a typical modeling framework, we took the very 
atypical approach of directly incorporating the influence of climate parameters on tree growth. 

One of the most difficult challenges in forest modeling is predicting tree mortality. Typical 
approaches for modeling individual tree death often focus on immediate measures such as 
recent growth and/or current stand density. However theory suggests that tree mortality is a 
cumulative process (Anderson 2000) where the events over the lifetime of an organism 
influence its likelihood of future survival. Thus consideration of the long-term record of tree 
growth can improve estimates of tree mortality (Bigler and Bugmann 2003; Bigler et al. 2004; 
Das et al. 2007). For this analysis, we explored two different approaches to estimate tree 
mortality. First we simulated mortality following the typical FVS implementation where 
mortality is divided into two categories: background and density-induced (Dixon 2003). We 
also built a predictive model of tree mortality that combined measures of average growth, 
growth trend, and abrupt growth decreases in order to examine the relationship between a 
tree’s growth history and probability of mortality (Das et al. 2007). 

For this project, we initially focused on developing and testing WS CalClim 1.0 for ponderosa 
pine, one of the major timber species in the Sierra Nevada. According to recent estimates, pine 
growing stock in California exceeds six million cubic feet (FRAP 2003). It is a commercially 
preferred species that is often grown in single-species plantations. To judge the implications of 
WS CalClim 1.0 on pine productivity, we obtained inventory data for a young pine plantation 
and then ran simulations of growth using a realistic management regime and scenarios of 
climate change. It is only by considering the entire modeling enterprise that we can evaluate the 
efficacy and feasibility of climate-sensitive growth and yield models.  

We recognize that accurate prediction of forest growth is a necessary but not sufficient 
condition for a full accounting of the potential climatic and economic benefits from forestry 
projects in California. A more comprehensive approach is needed, one that tracks the 
conversion of harvested wood products into bioenergy feedstocks as well as status of forest 
products over their entire life-cycle. For managed forests in temperate regions, a recent paper in 
Science summarized some of the potentials and challenges:  

Joint use of carbon sequestration and the provision of forest-derived products 
(e.g., timber and biomass for energy) will optimize the contribution of forestry in 
climate mitigation. Such options are particularly attractive in temperate regions 
where land availability is limited by high prices and strong competition with 
other land uses. Although complexities in quantifying the net carbon benefits of 
some of these activities may limit their role in global carbon markets, they will 
have a place in national mitigation strategies, particularly when used 
synergistically with goals and policies other than climate mitigation. For 
instance, fire reduction policies that require the removal of undergrowth and 
occasional thinning can contribute to production of bioenergy.  
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Canadell and Raupach 2008 

In this report, we briefly describe how such an approach could be applied to the forests 
of California.  

2.0 Methods and Results  

2.1. Climate Sensitive Forest Growth Model (WS CalClim 1.0) 
2.1.1. Data Sources  
Three primary data sources provided the tree growth and stand condition information (Table 1) 
needed to build the climate-sensitive FVS variant for the Sierra Nevada (i.e., WS CalClim 1.0). 
Data from more than 1,000 plots and 65,000 trees were available from locations throughout the 
Sierra Nevada biogeographic province (Figure 1). The extent and distribution of these plots 
helped ensure that a wide range of climatic and biological conditions were included in the 
growth model development.  

 
Table 1. Data used for model fitting of individual tree growth equations. 
NCStem: Stem analysis data from the Northern California Forest Yield 
Cooperative (Biging 1983). NCPlot: Permanent plot and increment core data 
from the Northern California Forest Yield Cooperative (Wensel 1987). 
DolphMC: Mixed conifer increment core and permanent plot data from the 
USDA Forest Service Pacific Southwest Research Station (Dolph 1988). 

 
 
We 

built a custom data-parsing program to derive diameter and height increments from the 
available increment and stem analysis data. We also calculated competition indices, site index 
(based on protocols established by Krumland and Eng 2004), and tree age.  

The climate data was obtained from the Parameter-elevation Regression on Independent Slopes 
Model (PRISM ) climate mapping system (PRISM Group 2007). PRISM incorporates point data, 
a digital elevation model, and expert knowledge of climatic extremes to produce estimates of 
mean monthly minimum and maximum air temperatures, dewpoint temperature, and 
precipitation on a 4-kilometer (km) by 4-km grid. PRISM data sets are recognized as the highest 
quality climate data sets currently available and serve as the United States Department of 
Agriculture’s (USDA’s) official climate record (PRISM Group 2007). Raw PRISM data files were 
processed to produce plot-specific climate parameters and the output was matched to the 
appropriate tree records. 

Validation data were used to provide an independent evaluation of the growth models. Data 
sources included: Blodgett Forest Research Station (University of California Berkeley Center for 
Forestry), Boggs Mountain Demonstration State Forest, LaTour Demonstration State Forest, and 
Mountain Home Demonstration State Forest (California Department of Forestry and Fire 
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Protection). These research and demonstration forests span a wide geographic range (Figure 1), 
and thus provided an appropriate test of climate influence on tree growth. 

 

 
Figure 1. Map of data sources for model fitting and validation 

 

2.1.2. WS CalClim 1.0 Development 
A western United States regional height growth model for ponderosa pine was developed by 
Uzoh and Oliver (2006). They employed a linear mixed-effects approach on an individual-tree 
distance-independent model using experimental remeasured levels of growing stock data from 
five studies. Their complete model construction is shown below (Eq. 1): 

(Eq.1) 

 

The predictor is the expectation of the natural log of periodic height increment. The 
independent variables are diameter at breast height (dbh), site index (SIM), slope and aspect 
factors (SL, ASP), elevation (ELEVA), stand density index (SDI), and basal area larger than the 
target tree (BAL). The random effects are trees (i), plots (j) and the five study site locations (l). 
The error term eik(jl) is a random error term for the ith tree and the kth measurement, assuming 
that the expectation of location l and plot j is zero with variance �. The covariance between the 
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observation on the same tree at time k and k� separated by d years is an autoregressive process 
given by: 

  (Eq. 2) 

where � is the serial correlation coefficient between the measurements on the same tree over 
time. Using cross validation techniques, Uzoh and Oliver (2006) demonstrated that the mixed-
effects model more accurately predicted growth than a function developed using a more 
traditional linear regression approach.  

Stage and Salas (2007) presented growth functions that permit the integration of the 
topographic components (i.e., slope, aspect, and elevation) into a diameter growth model, but 
recommended that the model must be considered in its entirety even though in a statistical 
sense certain parameters may appear non-significant. The incorporation of topography is logical 
from an ecological consideration of species occurrence and vigor in the Sierra (Royce and 
Barbour 2001b). When integrated into a tree growth model that has the objective of being 
sensitive to climate change, however, care must be taken to not force relationships based on 
past climate. The functional form for plot mean annual increment presented by Stage and Salas 
(2007) is: 

 (Eq. 3) 

 
where MAI is the mean annual increment, b’s are coefficients, � is the azimuth of the aspect in 
degrees, el is the elevation (formulated to be invariant to the units used), and Albrx and Albry 
are the latitude and longitude in Universal Transverse Mercator (UTM) coordinates.  

Thus in fitting our ponderosa pine diameter and height growth models, we followed Uzoh and 
Oliver (2006) recommendations and used a linear mixed effects model with a similar covariance 
structure. We tested for spatial autocorrelation by recognizing each plot as a random factor, but 
there was no autocorrelation present. We also incorporated topographic components (following 
Stage and Salas 2007) and evaluated the performance of a host of climate parameters. There is 
no analytical method available for calculating p-values or confidence intervals for the regression 
parameters. Therefore a Markov Chain Monte Carlo method using 1,000 observations was used 
to estimate unbiased 95% confidence intervals (alpha = 0.05) of the parameters. All statistical 
analyses were run using the R statistical programming language (R 2008). 

2.1.3. WS CalClim 1.0 Results  
Diameter Growth 
Results for the diameter growth equation are given in a mix of U.S. and metric units, as these 
are the units of measure for the respective parameters. There were 11,334 observations in the 
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regression data set. While some of the topographical variables were not significant as expected 
(Eq. 4), the full formulation was retained in the final growth equation as recommended by Stage 
and Salas (2007).  

 (Eq. 4) 

 
where  DG    = annual diameter growth, 

dbh   = diameter at breast height (in.) 
 CR   = crown ratio  

BAL   = basal area in trees larger than the subject tree (square feet /acre) 
 SL   = average slope of the plot (%) 
 PREC   = annual precipitation (millimeters, mm) 
 MAXT5DAYS  = number of days in year that temperature at or above 5°C 
 TRANGE  = average temperature range over the year (°C )  
 ASP   = average aspect of the stand (radians) 
 ELEV   = average elevation of the plot (feet) 
 Albrx   = longitude in UTM coordinates 
 Albry   = latitude in UTM coordinates 
 bi   = regression coefficients 
 eik   = error of kth measurement on the ith tree 
 e   = unexplained error. 
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The coefficients and the 95% confidence intervals for these variables are listed in Table 2. As 
expected, trees with a higher crown ratio (CR) grew faster and trees with higher competition 
index (index based on BAL, b4) grew slower. Clearly local topography influenced tree growth 
with no less than 11 associated variables included to capture the environmental variation 
associated with topographic differences (Table 2). Growth also increased as a function of 
increasing latitude and decreasing longitude. The geographical arrangement of the plots around 
the northern end of the Central Valley made the longitude variable somewhat illogical. While 
the longitude parameter was statistically significant, it was highly correlated with latitude at 
0.918. Dropping longitude from in the model was considered, but a substantial penalty in 
variance was observed, so it was decided to leave longitude in the model with the caveat that 
the user must apply the model in logical locations. The model was corrected for log 
transformation bias (Snowdon 1991) with a resulting factor of 0.168. 

The most informative climate variables retained in the model were precipitation (PREC) and 
two measures of temperature, the total number of days each year where the maximum daily air 
temperature was ≥ 5°C (MAXT5DAYS) and the average annual range in mean monthly 
maximum and mean monthly minimum temperatures (TRANGE).  

Ponderosa pine diameter growth increased with more precipitation and warmer days as 
measured by MAXT5DAYS. In contrast, diameter growth decreased as range of temperatures 
increased. All attempts to refine the models to use seasonal precipitation and temperature did 
not produce improved models relative to annual values.  

Table 2. Coefficients and statistics for ponderosa pine annual diameter growth 
model used in WS CalClim 1.0. See text for definition of variables. 
Parameter Coefficient Std. 

Error 
t-value Lower 95% CI Upper 95% CI 

Intercept (b0) -1.866e+01    1.294e+00 -14.418 -2.153370e+01 -1.618429e+01 
log(DBH) (b1) 8.367e-01   7.135e-02   11.726 4.843457e-01   1.018637e+00 
DBH (b2) -3.819e-02   4.707e-03 -8.113 -5.139110e-02 -2.424123e-02 
Crown Ratio (b3) 1.593e+00   5.990e-02   26.596 1.390180e+00   1.634660e+00 
BAL Index (b4) -2.996e-03 1.347e-04 -22.241 -3.186054e-03 -2.629585e-03 
Slope (b5) -6.598e-03   1.331e-01   -0.050 -2.153327e-01   3.099591e-01 
Precipitation (b6) 3.291e-05   1.606e-06 20.493 2.473077e-05   3.870047e-05 
MAXT5DAYS (b7) 5.931e-03   6.131e-04    9.674 5.021313e-03   8.375859e-03 
Temperature Range (b9) -1.881e-04   6.053e-05   -3.107 -2.741266e-04  -2.662238e-05 
Cos(Aspect) * Slope (b10) -1.785e-01   1.275e-01   -1.400 -4.623452e-01   1.926228e-02 
Sin(Aspect) * Slope (b11) 1.672e-01   1.041e-01    1.606 4.180390e-02   4.658846e-01 
Slope * log(Elev+1) (b12) 1.130e-04   1.701e-02    0.007 -3.950711e-02   2.711979e-02 
Slope * log(Elev+1) * 
Cos(Aspect) (b13) 

2.329e-02   1.623e-02    1.435 -2.138031e-03   5.919769e-02 

Slope * log(Elev+1) * 
Sin(Aspect) (b14) 

-2.123e-02   1.329e-02   -1.597 -5.917937e-02  -4.750561e-03 

Slope * Elev2 (b15) 3.139e-10   4.774e-10    0.658 -5.049413e-10 1.348490e-09 
Slope * Elev2 * Cos(Aspect) 
(b16) 

-8.757e-10 4.337e-10 -2.019 -1.767739e-09  -1.736110e-10 

Slope * Elev2 * Sin(Aspect) 
(b17) 

4.911e-10   3.614e-10 1.359 9.170710e-11   1.560215e-09 

Elevation (b18) -2.051e-04 1.994e-04   -1.028 -5.164087e-04   2.928792e-04 
Elev2 (b19) 1.653e-08   2.377e-08 0.695 -4.091342e-08 5.534349e-08 
UTM-X (b20) 3.917e-03   3.065e-04 12.779 3.351550e-03   4.610263e-03 
UTM-Y (b21) 2.298e-03  2.009e-04   11.439 1.835708e-03  2.660122e-03 
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Height Growth 
The model formulation was the same as the diameter growth model (Eq. 4) except that the 
temperature variable MAXT5DAYS was replaced by MINT10DAYS, which was the number of 
days a year where the daily minimum temperature was ≥ 10°C. MAXT5DAYS can be thought of 
an index of the number of cold days per year (larger values = fewer cold days). Whereas 
MINT10DAYS is an index of the number of warm days per year (larger values = more warm 
days). Both are related to growing season length. Also, dbh was replaced by total height (THT) 
except in the BAL variable where dbh was retained. There were 11,921 observations in the 
regression data set. The coefficients and their 95% confidence intervals are listed in Table 3. The 
model was corrected for log transformation bias (Snowdon 1991) with a resulting factor of 0.248. 

Again, crown ratio (CR) was an excellent predictor of growth, but height growth was less 
influenced by the competition index (BAL, b4). Topographic variation also helped explain 
observed differences in height growth but overall height increment was less sensitive than 
diameter increment. The height growth-climate relationships were the same as for the diameter 
growth (i.e., growth increases with precipitation and air temperature) except that height growth 
was positively correlated with temperature range (TRANGE). In other words, as the difference 
between daily minimum and daily maximum of temperature increases height growth also 
increases.  

Table 3. Coefficients and statistics for ponderosa pine annual height growth 
model used in WS CalClim 1.0. See text for definition of variables.  
Parameter Coefficient Std. 

Error 
t-value Lower 95% CI Upper 95% CI 

Intercept (b0) -5.957e+00   1.033e+00   -5.767 -8.244508e+00  -3.986881e+00 
log(THT) (b1) 6.091e-01   3.784e-02   16.095 5.823818e-01   7.312689e-01 
THT (b2) -7.339e-03   7.188e-04  -10.210 -9.435084e-03  -6.404087e-03 
Crown Ratio (b3) 1.229e+00   4.940e-02   24.870 1.146082e+00   1.338070e+00 
PBAL Index (b4) -2.927e-04   1.236e-04   -2.368 -7.782488e-04  -2.635979e-04 
Precipitation (b5) 1.783e-05   1.909e-06    9.342 1.292193e-05   2.062822e-05 
MINT10DAYS (b6) 2.874e-03   3.464e-04    8.297 1.991182e-03   3.358933e-03 
Temperature Range (b7) 3.932e-04   6.722e-05    5.850 3.029568e-04   5.603714e-04 
Slope (b8) -4.900e-01   1.139e-01   -4.301 -6.498952e-01  -1.896886e-01 
Cos(Aspect) * Slope (b9) -1.211e-01   1.122e-01   -1.080 -4.349767e-01  -8.978438e-03 
Sin(Aspect) * Slope (b10) -4.159e-02   9.116e-02   -0.456 -2.321686e-01   1.126805e-01 
Slope * log(Elev+1) (b11) 6.029e-02   1.455e-02    4.145 2.211986e-02   8.093697e-02 
Slope * log(Elev+1) * 
Cos(Aspect) (b12) 

1.507e-02   1.430e-02    1.054 9.937357e-04   5.508373e-02 

Slope * log(Elev+1) * 
Sin(Aspect) (b13) 

5.877e-03   1.162e-02    0.506 -1.393593e-02   3.035293e-02 

Slope * Elev2 (b14) -7.736e-10   3.996e-10   -1.936 -1.395162e-09   2.072072e-10 
Slope * Elev2 * Cos(Aspect) 
(b15) 

-3.478e-10   3.847e-10   -0.904 -1.473844e-09  -1.603383e-11 

Slope * Elev2 * Sin(Aspect) 
(b16) 

-2.998e-10   3.110e-10   -0.964 -9.315672e-10   2.886084e-10 

Elevation (b17) -6.123e-04   1.669e-04   -3.669 -8.162919e-04  -1.915689e-04 
Elev2 (b18) 4.829e-08   1.953e-08    2.473 -6.100775e-10   7.296860e-08 
UTM-X (b19) 2.170e-03   2.387e-04    9.092 1.740146e-03   2.739877e-03 
UTM-Y (b20) 5.722e-04   1.629e-04    3.512 1.916015e-04   8.541555e-04 
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2.1.4. WS CalClim 1.0 Evaluation  
Predictions from the diameter and height growth model were compared to tree measurements 
from the four research forests (Figure 1) by calculating residuals (observed growth – predicted 
growth). Since these data were not included in the model development, they represent a true 
test of model performance. Overall, both models performed well. There were no trends in the 
diameter growth residuals with tree diameter (dbh) or stand basal area (BAL). The mean annual 
diameter growth residual was 0.037 inches with a 95% confidence range of 0.021 to 0.052. Thus 
the CalClim diameter growth model did have a slight tendency to underestimate ponderosa 
pine diameter increment across the four data sets.  

Although fewer data were available for validation of the height growth (tree height is measured 
less often than tree diameter), the available results indicated that the CalClim height growth 
model performed well. No trends were observed in the residuals. Moreover the mean annual 
height growth residual was 0.180 feet with a 95% confidence range of -0.086 to 0.446, indicating 
no significant prediction bias.  

2.2. Models of Tree Mortality 
2.2.1. Default Mortality Estimator 
The default mortality function in WS CalClim 1.0 was modeled in two parts: background and 
density-induced. Background mortality was estimated as a weighted stochastic process where 
weights were based on the relative size (dbh) of a tree and its shade tolerance factor. In effect, 
smaller, less-shade tolerant trees were more likely to be killed by background events. Density 
dependent mortality was a function of the species’ weighted stand density index (SDI, Reineke 
1933). Density dependent mortality was induced at 55% of the maximum SDI and stand 
densities was never permitted to exceed 85% of the maximum (Ritchie 1999). Note that neither 
part of the default mortality estimator directly accounted for inter-tree competition. 

2.2.2. Cumulative-Growth Mortality Estimator 
We developed a mortality estimator for ponderosa pine based on an analysis of the long-term 
growth record. We collected, processed, and measured more than 200 ponderosa pine tree ring 
samples from the Blodgett Forest Research Station. We crossdated these samples to correct for 
measurement errors. We then generated an extensive list of candidate mortality functions that 
included elements from the long-term growth record, including average recent diameter 
growth, the trend in diameter growth, and the presence of abrupt declines in growth (Das et al. 
(2007). Survival probability was modeled using the logistic function with the general form given 
below: 

  
(Eq. 5) 
 

where π(x) is survival probability and g(x) is a linear function of growth indices. 

We used the growth records from live and dead tree to fit these models. For all models we 
compared performance using the following statistics:  

1. Akaike Information Criteria (AIC): a measure of the likelihood of the model given the 
data that penalizes the more complex models (i.e., models with more variables).  
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2. Receiving Operator Characteristics (ROC): a measure of the model’s predictive skill. 
ROC = 0.5 indicates no predictive skill; ROC > 0.7 indicates a reasonable fit.  

3. Fit of unweighted sum of squares: a measure of the total amount of prediction error. 
Values reported as p-values that range from 0 to 1 with larger numbers indicating less 
error.  

Based on these results, we proposed the following specification for ponderosa pine survival 
probability equation:  

 
where g(x) is the linear function of growth indices used to estimate survival probability (Eq. 5), 
slope15rba is the slope of the relative basal area increment for the last 15 years, and int5 is the 
number of sharp declines in growth during the last five years. An abrupt decline was defined as 
a drop in year to year growth increment of 50% or more. The implications of this model are that 
a positive trend in relative basal area increment during the past 15 years indicates a higher 
probability of survival while the occurrence(s) of abrupt annual growth declines in the last five 
years indicates a lower probability of survival. The predictive ability of this model was solid 
(ROC = 0.72) as was the fit (p = 0.69). The model also outperformed the baseline mortality 
model, which is determined solely by the last five years of diameter growth (ROC = 0.53  
and p = 0.52).  

2.3. Forest Simulations under Future Climate Scenarios 
2.3.1. Study Site 
We initiated our simulations with forest inventory data from a 20 years-old pine plantation near 
Whitmore in Shasta County, California. Shasta is major timber producing county. In 2007, 
191,618 million board feet of timber were harvested (11.8% of total volume in the state) with a 
value of $43,948,866 (third highest value by county, California State Board of Equalization 2008). 
The stand was planted with ponderosa pine after a fire and is being managed as a commercial 
operation. At the start of our simulations (stand age = 20 years-old), there were 295 trees/ac 
with a basal area of 72 square feet per acre (ft2/ac) and a total volume of 794 cubic feet per acre 
(ft3/ac). 

2.3.2. Downscaled Climate Change Scenarios 
Two of the climate parameters needed for WS CalClim 1.0 required daily maximum and 
minimum air temperature. Thus we obtained results from three global climate models (GCMs) 
where downscaled data was available on a daily basis. The three models included in our 
analysis were the GFDL model (version CM2.1, NOAA Geophysical Fluid Dynamics 
Laboratory, Princeton New Jersey, Anderson et al. 2004), the CNRM-CM3 model (Center 
National Weather Research, Toulouse, France, Salas-Mélia et al. 2005), and the PCM (Parallel 
Climate Model) (Meehl and Washington group at the National Center for Atmospheric 
Research [NCAR] in Boulder, Colorado; Meehl et al. 2003). We used the downscaled data from 
the nearest gridpoint (1/8 degree grid) to our study site. We choose the climate predictions 
generated by the constructed analogues (CA) downscaling technique because of its greater skill 
in capturing daily variability in temperature and precipitation (Maurer and Hidalgo 2008). All 
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of our climate data were obtained from the 2008 Scenarios—Simulation Data and Information 
webpage (Tyree 2008). 

Impacts were analyzed for two greenhouse gas (GHG) emissions scenarios: A2 (relatively high 
emissions) and B1 (low emissions). For the A2 scenario, carbon dioxide (CO2) emissions 
continue to climb throughout the century, reaching almost 30 Gt yr-1 (gigatonnes per year), so 
that by the end of the century CO2 concentration reaches more than triple its pre-industrial 
level. For the B1 scenario, CO2 emissions peak just below 10 Gt yr-1 in mid-century before 
dropping below present-day levels by 2100. This corresponds to a doubling of CO2 
concentration relative to its pre-industrial level by the end of the century (Cayan et al. 2008).  
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Table 4. Summary of annual climate parameters used in the CalClim variant of FVS. Means (standard 
deviations)  
are given for each time period. Daily climate data based on downscaled (analog method) for three global 
climate  
models under two different emissions scenarios.  

 
 Time Period PREC 

 (mm) 
 MAXT5DAYS 

(days) 
 MINT10DAYS 

(days) 
 TRANGE 

(°C) 
GFDL  
CM2.1 

 
A2 B1  A2 B1  A2 B1  A2 B1 

 1951–2000 372.0 
(83.0) 

372.0 
(83.0) 

 310.9 
(14.1) 

310.9 
(14.1) 

 30.9 
(10.8) 

30.9 
(10.8) 

 15.2 
(0.6) 

15.2 
(0.6) 

 2011–2060 347.9 
(74.8) 

388.6 
(88.9) 

 323.3 
(11.9) 

322.6 
(12.8) 

 52.9 
(11.9) 

47.4 
(11.1) 

 15.6 
(0.7) 

15.4 
(0.7) 

 2051–2100 344.2 
(83.9) 

369.9 
(84.2) 

 336.9 
(84.2) 

327.9 
(12.9) 

 78.1 
(16.1) 

57.6 
(11.4) 

 16.0 
(0.6) 

15.6 
(0.7) 

             
CNRM 
CM3 

            

 1951–2000 494.9 
(125.2) 

494.9 
(125.2) 

 305.0 
(13.4) 

305.0 
(13.4) 

 29.5 
(10.6) 

29.5 
(10.6) 

 14.5 
(0.7) 

14.5 
(0.7) 

 2011–2060 539.8 
(145.5) 

546.5 
(128.5) 

 311.1 
(12.6) 

312.5 
(11.6) 

 57.4 
(13.3) 

55.3 
(11.7) 

 14.4 
(0.6) 

14.5 
(0.6) 

 2051–2100 528.2 
(110.4) 

546.5 
(117.9) 

 327.4 
(12.2) 

316.9 
(14.8) 

 94.2 
(14.3) 

71.1 
(10.6) 

 14.2 
(0.5) 

14.7 
(0.7) 

             
NCAR 
PCM1 

            

 1950–1999 498.6 
(152.1) 

498.6 
(152.1) 

 315.4 
(14.5) 

315.4 
(14.5) 

 25.3 
(7.3) 

25.3 
(7.3) 

 15.3 
(0.6) 

15.3 
(0.6) 

 2011–2060 520.2 
(128.0) 

549.4 
(143.0) 

 319.8 
(13.2) 

320.7 
(11.9) 

 41.7 
(11.3) 

33.7 
(7.5) 

 15.1 
(0.6) 

15.2 
(0.6) 

 2050–2099 490.1 
(129.0) 

506.0 
(108.4) 

 334.4 
(12.6) 

328.7 
(13.5) 

 59.4 
(12.8) 

42.3 
(9.6) 

 15.4 
(0.6) 

15.4 
(0.7) 
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2.3.3. Growth and Yield Model Runs  
We obtained 150-yr climate projections (1950–2100) from the downscaled output generated by 
the three GCMs for each of the two emissions scenarios (six predictions). We calculated the 
annual climate parameters needed for the WS CalClim 1.0 forest growth model. For each set of 
projections, we simulated forest growth from 1951–2000 (baseline), from 2011–2060 (early 
twenty-first century) and from 2051–2100 (late twenty-first century). Note that downscaled 
estimates from the NCAR model were only available until 2099. Therefore, we adjusted the 50-
year time series by one year.  

We ran all of our simulations for 50 years with a commercial harvest after 20 years (stand age = 
40 years old). We set a target basal area for the harvest at 75 ft2/ac. The timing and target of this 
management strategy follow typical forest practice in California. In all the simulations, we used 
the default mortality estimator. 

 
Table 5. Forest yield under various climate scenarios. Management 
scenarios begin with 20 years of growth for a stand is 20 years old at 
the start. After 20 years, there is a commercial harvest to a target basal 
area = 75 ft2/ac. The stand then grows for another 30 years without 
further intervention. The default mortality function for CalClim was 
used. Reported below is total volume in ft3/ac. Net  is the total volume of 
wood grown (Final – Initial + Harvest).  

 
    
GFDL CM2.1    
 A2  B1 
 Harvest Final Net  Harvest Final Net 

1951–2000 138 2177 1521  138 2177 1521 
        

2011–2060 154 2341 1701  151 2297 1654 
        

2051–2100 167 2521 1894  156 2401 1763 
 

CNRM CM3    
 A2  B1 
 Harvest Final Net  Harvest Final Net 

1951–2000          127 2136 1469  127 2136 1469 
        

2011–2060 138 2288 1632  149 2268 1623 
        

2051–2100 160 2510 1876  142 2392 1740 
 

NCAR PCM1    
 A2  B1 
 Harvest Final Net  Harvest Final Net 

1951–2000 146 2194 1546  148 2195 1549 
        

2011–2060 136 2270 1612  157 2249 1612 
        

2050–2099 159 2399 1764  148 2338 1692 
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2.3.4. Simulation Results 
All six downscaled climate realizations for the site in Shasta County predicted consistent 
increases in air temperature during the next century. In contrast, changes in precipitation were 
more variable among the realizations and of a much smaller magnitude (Table 4). As expected, 
daily maximum and minimum air temperatures increased more steeply during next century 
under the more severe (i.e., A2) GHG emissions scenario. While predicted temperature trends 
were similar among the GCMs, predicted precipitation varied among the models. In most cases 
(8 out of 12), precipitation increased above the baseline but never more than 10% (Table 4). For 
example, CNRM forecasted a warmer and wetter climate for our site in the next century, 
contrasting with the expectations of a warmer and slightly drier climate from the GFDL model.  

Despite the changes in projected climates, it is important to note that the range of values in 
these future scenarios did not exceed the range included in model development. Our models 
were based on field data across a large latitudinal gradient (Figure 1) collected over a 40-year 
period (Table 1). This spatial breadth and temporal depth ensured the inclusion of extreme 
climate conditions on tree growth in CalClim 1.0. Thus for the scenarios explored in this 
research, we are not attempting to predict forest growth for entirely novel conditions. 

In terms of climate parameters that influence growth in WS CalClim 1.0, MINT10DAYS 
increased the most both in relative and absolute terms during the century. In some cases, the 
mean number of MINT10DAYS doubled and even tripled by the end of the century (Table 4, 
Figure 2). While overall mean air temperatures rose under all realizations, the range in 
temperature (i.e., the average difference between daily minimum and maximum temperature) 
changed very little (Table 4).  
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Figure 2. Annual estimates from 1950–2100 for two climate parameters influencing 
diameter and height growth in WS CalClim 1.0. Projections based on downscaled 
estimates from the CNRM-CM3 global circulation model using the A2 emissions 
scenario.  

 

Growth of the ponderosa pine plantation increased under all climate realizations (Table 5). 
Comparing baseline (1951–2000) to the end of the century (2050–2100), increases in total volume 
increment (ft3/ac) ranged from 9.2% (NCAR, B1) to 27.7% (CNRM, A2). Mid-century growth 
projections (2011–2060) were always greater than baseline time period but less than the end of 
the century. The major driver of the simulated increase in volume growth was the sharp rise in 
tree height growth. As noted above, in WS CalClim 1.0 the most informative climate variables 
related to air temperature were measured in degree-days. For diameter growth, the best 
predictor of annual growth was the number of days per year where the maximum daily 
temperature was ≥ 5°C (MAXT5DAYS). For height growth, the best predictor was the number 
of days per year where the minimum daily air temperature was ≥ 10°C (MINT10DAYS). Since 
MINT10DAYS increased much more than MAX5DAYS for all climate realizations (Table 4), tree 
height increased proportionally more than diameter growth. For example, under the CNRM A2 
climate realization, the relative increases in tree height (Figure 3B) were much greater than 
relative increase in basal area (a metric based solely on tree diameter increment, Figure 3A) and 
the pattern in volume increment (Figure 3C) more closely matched the trends in height growth.  
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Figure 3. Forest growth projections for a 20 years-old pine plantation under the A2 
emissions scenario using WS CalClim 1.0. Climate parameters were derived from 
downscaled estimates from the CNRM-CM3 global circulation model: (A) Basal area 
projections; (B) Tree height projections; (C) Total volume projections. 
 

2.3.5. Sensitivity Analysis 
The four climate parameters included in the growth models co-varied under the suite of 
realizations used in this analysis. The degree-day variables that were derived from air 
temperature (i.e., MAX5DAYS and MINT10DAYS) always changed in the same direction. They 
increased and therefore the influence on forest growth was always synergistic. On the other 
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hand, changes in precipitation and temperature range sometimes worked in synergy with 
temperature (increased growth) and sometimes in antagonism (decreased growth). To quantify 
the independent impact of the climate parameters, we examined the effects of each parameter in 
isolation.  

We used the climate projections from 1951–2000 from the NCAR PCM1 model as a baseline for 
a sensitivity analysis. For each climate parameter, we calculated the minimum and maximum 
changes observed among all 36 climate scenarios (Table 4). We then ran growth simulations for 
our test case where we varied one climate parameter in turn. All the other parameters remained 
at baseline levels. The results are nine yield projections (baseline + 8 single variable projections, 
Table 6). Our measure of sensitivity was the proportional difference in the total volume of wood 
growth over a 50-year period compared to baseline: (NETclimate parameter – NETbaseline)/ NETbaseline 
*100%.  

Table 6. Sensitivity analysis of forest yield predictions due to changes 
in individual climate parameters. Management scenarios begin with 20 
years of growth for a stand is 20 years old at the start. After 20 years, 
there is a commercial harvest to a target basal area = 75 ft2/ac. The 
stand then grows for another 30 years without further intervention. The 
default mortality function for CalClim was used. Reported below is total 
volume in ft3/ac. Net is the total volume of wood grown (Final – Initial + 
Harvest). % Change was calculated with reference to the baseline 
results.  

 Harvest Final Net  % 
Change 

Baseline 146 2194 1546  -- 

      
PREC  +10% 146 2195 1547  0.06 

PREC  - 7% 146 2192 1544  -0.12 

      
MAXT5DAYS  +10% 186 2340 1732  12 

MAXT5DAYS  +4% 166 2264 1636  5.8 

      
MINT10DAYS  +219% 155 2674 2035  31.6 

MINT10DAYS +67% 149 2267 1622  4.9 

      
TRANGE +5% 147 2226 1579  2.1 

TRANGE  - 2% 147 2181 1534  -0.78 

 
As noted above, MINT10DAYS was the climate parameter predicted to experience the greatest 
proportional increase over the next 100 years. Given the magnitude of change and its influence 
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on tree growth, MINT10DAYS was the single most influential determinant of forest yield (Table 
6). In contrast, the relatively small shifts in PREC had a negligible affect on forest growth. For 
example, a 10% increase in PREC lead to <1% increase in yield (Table 6). Clearly increases in 
temperature as measured with MINT10DAYS (fewer cold days) and MAXT5DAYS (more warm 
days) were the major drivers of the observed increases in forest growth.  

2.4. Assessment of Forest Management Activities.  
When considering the potential impacts of climate change on forest management in California, 
it is important to recognize that the range of options available to managers varies greatly. Both 
ecosystem productivity and land ownership matter. Of the 33% of California that is classified as 
forest (3 x 107 acres), 59% is timberland available for management (Table 7). The remainder is 
either too unproductive (24% of all California forest land) or is legally reserved (e.g., parks, 17% 
of total). 

 
Table 7. Forest land ownership in California in 2005. Units = thousand acres. 
Owner Class Unreserved Forest Land Legally Reserved Forest 

Land 
 

 Timberland Unproductive Productive Unproductive Total 
Corporate Private 4,402 338 0 0 4,740 
Noncorporate 
Private 4,593 3,907 0 0 8,500 
State and Local 258 211 381 215 1,065 
U.S. Forest Service 9,784 2,424 2,626 923 15,757 
Other Federal 514 986 993 663 3,156 
All owners  19,551 7,866 4,000 1,801 33,218 
Source: Christensen et al. 2008. 
 
To quantify the range of management activity on the 1.9 x 107 acres of timberland (Table 7), it is 
necessary to consider different behavioral classes within the various ownership categories and 
the different types of forest management practices that could be used (Table 8). Corporate 
private forestlands are overwhelmingly managed to maximize value through the sustainable 
production of wood products. Noncorporate private forests are mainly family forests and have 
more diverse management approaches. On an acreage basis, approximately one-quarter of the 
acres have commercial harvests, one-quarter of the acres have some degree of vegetation 
management to reduce risk (primarily fire risk reduction), and one-half of the acres are in a ”let 
grow” status (sensu Butler 2008). 

The goals of state and local government forest lands in California are primarily to provide open 
space, recreation, and habitat value with minimal levels of vegetation management for fire risk 
reduction, forest health, and public safety. More than half of federal forest lands have no roads 
and are unlikely for regulatory or practical reasons to ever have any vegetation management 
activities. Of the roaded areas of federal forest lands, environmental restrictions further limit 
where vegetation management could be undertaken. Thus in total, about 25% of California 
forests could potentially be managed as even-aged plantations—the scenario we explored in 
this report. 
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Table 8. California forest area by owner and probable management actions. 
Units = thousands of acres.  

Owner/Management 

Area 

Percent 
of 

Forest 
Area 
(%) 

Fire 
Suppression 

Risk Mgt w/ 
Veg Mgt 

Commercial 
Harvest 

Corporate Private + Family 
Forest /Timber 6,856 21 6,856 6,856 6,856 

Noncorporate Private w/o 
Family Forest/Timber 6,383 20 6,383 2,570 0 

Public/ Some Management 7,724 24 7,724 4,505 1,287 

Public/ No Management 12,255 36 3,791 266 0 

TOTAL 33,217 100 24,754 14,197 8,143 

Percent of Forest Area (%)   75 43 25 
 
3.0 Conclusions and Implications  

3.1. Prospects for WS CalClim 1.0  
Several measures of design and performance recommend further development and testing of 
WS CalClim 1.0, the initial version of a climate-sensitive growth and yield model of forest 
growth in the Sierra Nevada. WS CalClim 1.0 was based on the proven model logic of FVS. The 
specific growth functions used in WS CalClim 1.0 incorporated recent advances in forest 
biometry (e.g., Uzoh and Oliver 2006; Stage and Salas 2007). An extensive database of tree 
growth records was assembled (more than 11,000 ponderosa pine records) and then matched 
with the highest quality climate data available (i.e., PRISM 2008). The parameterization of the 
final functional forms of the growth equations used a sophisticated and flexible statistical 
approach that directly tested for confounding effects due to spatial autocorrelation and 
provided confidence intervals for all coefficients included in the model (Table 2, Table 3). Most 
importantly, both of the growth submodels in WS CalClim 1.0 were able to predict diameter 
and height increments in the validation data sets with little (diameter increment) to no bias 
(height increment). Also the application of WS CalClim 1.0 to the baseline growth projections 
for a typical 20 years-old ponderosa pine plantation produced 50-year yield estimates that 
qualitatively matched current expectations. Finally, because it was designed as a variant of FVS, 
WS CalClim 1.0 shares a common software interface, thus ensuring widespread availability.  

On the other hand, WS CalClim 1.0 is a new model incorporating innovative features. More 
extensive testing is necessary to ensure that this ponderosa pine model adequately captures the 
range of possible behavior.  

3.2. Comparison of WS CalClim 1.0 with CACTOSclim 
The initial results from WS CalClim 1.0 directly contradict our earlier analysis of the likely 
impacts of climate change on forest productivity in the Sierra Nevada (Battles et al. 2008). In the 
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previous effort, we reported that pine plantation yields declined from 5% to 25% by the end of 
the twenty-first century (Battles et al. 2008). Here we reported increases that ranged from 9% to 
28% by the end of the century (Table 5). Differences among the climate scenarios account for 
part of the discrepancy. In particular, there were no significant trends in projected precipitation 
from the downscaled climate scenarios used in Battles et al. (2008), whereas there were modest 
increases in precipitation in 8 out of the 12 cases explored here (Table 4). Nevertheless, the two 
models do incorporate disparate relationships between pine growth and air temperature. Yeh 
and Wensel (2000) found a strong negative correlation between mean summertime air 
temperature and pine diameter growth. We used these results to adjust predictions from the 
CACTOS model to account for changes in climate. (Note: we referred to this climate-adjusted 
version as CACTOSclim ). In contrast, the growth models in WS CalClim 1.0 had a strong positive 
relationship between pine growth and air temperature (as measured by degree day variables, 
MAXT5DAYS, MINT10DAYS). Below we discuss several major differences between the two 
models: 

1. The climate adjustments to CACTOS were based on the premise that all of the non-
random differences between the projected growth from a calibrated CACTOS model and 
the observed growth from stem analysis could be explained by changes in climate 
(Wensel and Turnblom 1998; Yeh and Wensel 2000). Other factors not accounted for in 
the original CACTOS that could lead to the overestimates of growth (e.g., growth 
declines due to air pollution, pest outbreaks, or disease interruptions) were not 
considered.  

2. Advances in the probabilistic and spatial interpolation of climate data provided WS 
CalClim 1.0 with precisely matched and widely vetted climate inputs. The PRISM 
climate data used in WS CalClim 1.0 was available on a 4-km by 4-km grid (PRISM 
Group 2007). Yeh and Wensel (2000) relied on much coarser regional estimates derived 
from a customized interpolation of records from the 32 weather stations in the vicinity of 
their tree growth data (Yeh et al. 2000).  

3. Data used to develop WS CalClim 1.0 was a super set of the data available to Yeh and 
Wensel (2000), and thus WS CalClim 1.0 considered tree growth and climate records 
from a greater temporal and spatial range.  

4. The scale of the analyses of climate-growth relationships varied. Yeh and Wensel (2000) 
used stem analysis to collect 15 years of annual growth increments. In contrast, much of 
the tree growth information used in WS CalClim 1.0 was based on inventories that 
periodically (i.e., every two to five years) measure diameter growth. Thus Yeh and 
Wensel had a much finer temporal scale and could explore intra-annual (i.e., seasonal) 
and biennial relationships between climate variables (e.g., total winter rainfall, previous 
summer mean air temperature) and tree annual increment.  

 

Despite these distinctions between the two models, the diametrical opposition of the results was 
surprising. We cannot determine the precise reasons for the disparity in expectations without 
deconstructing CACTOS and the peer-reviewed research that provided the climate adjustments. 
However it seems that the two models keyed into different components of future climate.  
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Tree growth in Sierran conifer forests is strongly controlled by the onset of warmer spring 
conditions as well as the timing of the end of moisture availability in late summer (Royce and 
Barbour 2001a, 2001b). Cactosclim appeared to respond to increased air temperature by projecting 
temperature-induced moisture stress, while WS CalClim 1.0 used the increased temperature to 
extend a temperature-limited growing season. The few studies that have examined the 
relationship between pine productivity and climate described a trade-off between increased 
growth due to the extension of the growing seasons afforded by warmer temperatures and 
reduced growth due to shortages in plant water availability (Matala et al. 2005; Girardin et al. 
2008). The importance of these trade-offs to accurate predictions have spurred interest in hybrid 
modeling approaches (Monserud 2003; Girardin et al. 2008). These systems retain the specificity 
and empiricism of growth and yield models but also incorporate results from process models 
that provide updated information on water and nutrient supply.  

3.3. The Mortality Models 
In this application of WS CalClim 1.0 we did not compare the performance of the two tree 
mortality models. Throughout our simulations of ponderosa pine plantation growth, we used 
the default FVS model. In the context of managed stands where density is controlled and 
predicted growth only increased with a warming climate, changes in the probability of 
mortality due to slow growth was not a major concern. However our empirical results suggest 
that the cumulative mortality model will provide more accurate estimates of tree survival 
probability for ponderosa pine growing in high density, closed canopy forests. Incorporating 
these alternative mortality models into CalClim and evaluating their impact on stand dynamics 
is a high priority for future work.  

3.4. Implications  
3.4.1. Climate-sensitive Forest Growth and Yield Models 
Clearly, predictions of increases in productivity of a preferred timber species (pine) in the 
Sierran timberlands throughout the twenty-first century have ramifications for economic and 
policy planning. The first priority is to confirm these results before developing climate 
adaptation strategies or conducting detailed downstream economic analyses. In addition, the 
inherent limitations of using a growth and yield model along with various climate change 
projections must be recognized. The goal of WS CalClim is to provide site-specific predictions of 
future stand dynamics. Although we are building the capacity to respond to climate in the 
model, we are not incorporating other physiological or ecological processes that may influence 
growth that operate at a seasonal rather than annual time scale. As noted above, tree growth in 
the Sierra Nevada is strongly influenced by the trade-off between an extended growing season 
and moisture limitations. The accuracy of different climate model estimates of seasonal trends 
in temperature, vapor pressure deficits, and soil moisture availability is not known. 
WS CalClim also does not consider changes in tree growth due to the direct effects of higher 
atmospheric CO2 concentrations (nor does CACTOSclim ). An authoritative review of the best 
evidence to date suggests that the increased productivity in closed-canopy forests caused by 
CO2 fertilization effects is likely to be short-lived (Korner 2006) and other resource limitations 
(e.g., nutrients, water) constrain growth. A strict statistical model like WS CalClim will never 
capture theses processes.  
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We suggest the best way to proceed is to build on the prospects of WS CalClim 1.0 while testing 
critical components of CACTOSclim. Further sensitivity analysis of pine growth models in WS 
CalClim 1.0 would help quantify the relative contribution of each of the climate parameters. 
Given the importance of the timing of the energy and water supply, a detailed analysis of the 
climate-growth relationship for the subset of records with annual resolution would help specify 
the nature of the trade-off between an extended growing season and induced moisture stress. 
Also, evaluating the ability of CACTOSclim to predict tree growth in our validation data would 
be very informative. Ultimately the lessons learned in the development, application, and 
evaluation of these models define the critical gaps on our understanding and outline the 
necessary empirical research to fill these gaps.  

3.4.2. Forest Policy and Economics 
The economic chapter of this report was originally designed to follow up on the oft-stated 
hypothesis that future climate conditions would be sufficiently different than those of past 
century and would require major changes in the species and stocking levels per acre if the 
owners were to maintain the value of their commercial timberlands. The assumption was that a 
surge of harvest volumes, much of it being of lower value than the high quality timber that 
constitutes the overwhelming share of taxable revenue for the industry, would present a 
challenge that could be profitably addressed by an expansion of the wood chip-fired energy 
infrastructure of California.  

However the results from our initial analysis suggest that existing ponderosa pine forests are 
reasonably well adapted for the climate stresses and will grow slightly faster under future 
climate scenarios. Continued developments in our modeling efforts indicate that all the major 
species in the Sierran mixed-conifer forest are likely to grow better under future climate 
scenarios (T. Robards, personal communication). This conclusion is conditional as it assumes a 
future where historic tree mortality rates prevail. This assumption is difficult to test. There is 
also evidence that California forests are already experiencing significant increases in new 
mortality associated with changes in climate (van Mantgem et al. 2009). Moreover, other novel 
disturbances whether they are related to climate or not (e.g., increased wildfire risk, pest and 
pathogen outbreaks) can alter predictions of carbon dynamics in forests. For example, the mass 
tree mortality associated with insect outbreaks across vast expanses of Canada’s conifer forest 
has shifted projections. Canadian forests are now expected to be near-term sources of CO2 
rather than long-term sinks (Kurz et al. 2008).  

Analyses of managed forests cannot rely solely on forest measurements since the full 
accounting of climate benefits requires tracking the harvested wood products into bioenergy 
feedstocks, as well as following the long-lived products over a century of use. The purpose of 
this section is to describe how such an approach could be applied to the forest area of 
California. The mandate from the state for more renewable energy and the potential to use 
vegetation management approaches to achieve diverse forest goals not related to the production 
of timber provides unique opportunities that could meet Canadell and Taupacuh’s (2008) goal 
to “optimize the contribution of forestry in climate mitigation.” 

3.4.3. Climate Benefits from Forest Management  
The key elements in a comprehensive accounting of climate benefits from managed forests are: 
(1) tracking biomass flows, and (2) assessing risk. The U.S. Department of Energy’s Voluntary 
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Reporting of Greenhouse Gases (1605(b)) Program (USDOE 2008) and California’s Greenhouse 
Gas Emissions Inventory (California Climate Change Portal 2008) both track the direct and 
indirect climate benefits from the forest sector. The direct benefits are accounted for in the net 
GHG emissions for forest lands that show a significant sink even when mortality events such as 
forest wildfires are taken into account. The indirect benefits provided by the substitution of 
fossil fuels with carbon-neutral energy used in the manufacturing, residential, and electricity 
sectors are less apparent, as they are small compared to the total emissions of those three 
sectors. However a growing body of evidence suggests that these benefits are real; they are 
achievable, and they are on par in terms of magnitude with “in-the-forest” sequestration of 
carbon (Eriksson et al. 2007; Hennigar et al. 2008; Sathre and Gustavsson 2008; Schlamadinger et 
al. 2007).  

Another major concern for California’s forest is the potential effects of climatically driven 
increases in wildfire area (e.g., Westerling et al. 2006). The impacts of these fires will depend 
both on weather and the fuel loading within the forest. In a recent analysis, Christensen et al. 
(2008) used the Forest Vegetation Simulator (FVS) and its Fire and Fuels Extension (FFE) to 
project wildfire risk from the most recent forest data collected as part of Forest Inventory and 
Analysis (FIA) program. They concluded that under extreme fire weather conditions, wildfires 
in California would be limited to surface fires on 72% of the forest (Christensen et al. 2008). Of 
the remaining 28% of forests at risk of destructive crown fires, they suggested that vegetation 
management in these stands could reduce this potential loss. Some of the treatments could 
produce substantial amounts of biomass that need to be taken off site to reduce short-term fire 
risks and long term GHG emissions as it decomposes. Net treatment costs can be reduced if 
harvested products are collected and sold for use in bioenergy production. Increases in burned 
biomass in wildfires will also increase smoke emissions that cause significant negative human 
health impacts, especially when it covers major residential areas. All of these potential changes 
to California’s forests under climate change scenarios need to be considered within a 
transparent geographic information system that can also include cost and benefit calculations.  

3.4.4. Next Steps 
Tracking the net climate benefits of forests and related forest products will require both an array 
of field plot data that cover all of California’s forests as well as data sets that can be coordinated 
with economic data that captures that import and export of forest products and their substitutes 
such as cement in construction and fossil fuels for energy generation. Although forests managed 
by different owners may look similar, the rates of growth, utilization of harvested products, and 
management of low-probability but high-impact risks such as intense wildfires vary 
considerably. Ensuring that a quantity of sequestered forest carbon offsets an emission requires 
that the forest carbon be monitored and guaranteed for 100 years. The only statewide 
accounting of forest inventories with a statistically valid basis of field plots, assessment of 
natural threats, and databases that can be linked to the import and export of wood products is 
the FIA reporting system managed by the U.S. Forest Service. It is based on 7,000 forest plots 
that are spaced at approximate 3-mile intervals. It has a number of analytical models linked to 
the plot level data that can be verified in the field when plots are remeasured. For example, the 
Biosum model (Fried and Christensen 2004; Barbour et al. 2008) can estimate the harvested 
wood products that could be produced from various vegetation management treatments given 
different price assumptions. Because it based on a spatial system with field plots, it could be 
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expanded to track GHG emissions as well as changes in the risk factors relevant for wildfires 
and insect outbreaks that may be exacerbated by climate change. Other spatially defined 
variables such as the current and potential future extent and population of various plant and 
animal species are based on spatial models that use maps rather than plot data. In addition the 
smoke from wildfires will always be a major public health risk that must be considered along 
with the GHG emissions. All of these overlapping goals and programs will require revenue 
from interested beneficiaries ranging from local users of open space to state taxpayers to buyers 
of forest products and services.  

For the 25% of forest area in California where sustainable forest management is currently 
practiced, there is a need to develop and validate climate-sensitive growth models for all the 
major species grown under managed conditions. Management by informed decision makers can 
change species mix and management to reduce potential negative impacts of various climate 
projections. The majority of the new climate benefits from this sector will show up as the 
sustainably produced forest products replace more GHG emission-intensive alternatives in the 
energy generation and building sectors. Across an additional 18% of forest area where 
sustainably produced forest products may be produced but are not an explicit management 
goal, there is scope for experimenting with vegetation management that could significantly 
reduce the predicted increases of GHG emissions from climate-induced increases in wildfires, 
insect and disease outbreaks, and possibly severe storms. There will be tradeoffs with open 
space values, wildlife habitat values, net water yields, and forest resiliency that will 
undoubtedly vary with forest type. These situations are well suited to the use of an 
experimental design approach at a significant enough scale and diversity that will produce 
management insights within the next 10 years. For the remaining 57% of forest area where the 
vegetation management is rarely used except for discrete projects to protect public safety or 
during fire suppression, the interplay between forest growth, forest mortality, and catastrophic 
wildfire events will determine net GHG emissions.  

Developing forest management strategies to increase the risk-adjusted level of climate benefits 
across all California forests and forest products will require the use of spatial tools to analyze 
the various tradeoffs and synergies among the different social goals and private value 
maximizing goals. Forest governed under different state and federal laws have different rules 
that govern the tradeoffs among various goals. The efficient management of products that are 
the main product (e.g., sustainably managed private forest plantations) or simply a by-product 
(e.g., wood chips produced from fire risk reduction activities) of different forest management 
regimes depends on the economic geography of road networks, location of sawmills and 
cogeneration facilities, links to the statewide electricity grid, and other factors. The public health 
impacts of existing and predicted future levels of wildfire smoke emissions depend on the 
proximity of wildfires to densely populated areas. A next step would be to develop a 
transparent and comprehensive set of tools that can combine both spatial data and different 
assumptions on future prices and technologies. Such a set of tools could be used to illustrate the 
tradeoffs and synergies among different social goals for forests—climate benefits, open space 
benefits, forest structure goals, and broader biodiversity goals.  
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